1,249 research outputs found

    Res2Net: A New Multi-scale Backbone Architecture

    Full text link
    Representing features at multiple scales is of great importance for numerous vision tasks. Recent advances in backbone convolutional neural networks (CNNs) continually demonstrate stronger multi-scale representation ability, leading to consistent performance gains on a wide range of applications. However, most existing methods represent the multi-scale features in a layer-wise manner. In this paper, we propose a novel building block for CNNs, namely Res2Net, by constructing hierarchical residual-like connections within one single residual block. The Res2Net represents multi-scale features at a granular level and increases the range of receptive fields for each network layer. The proposed Res2Net block can be plugged into the state-of-the-art backbone CNN models, e.g., ResNet, ResNeXt, and DLA. We evaluate the Res2Net block on all these models and demonstrate consistent performance gains over baseline models on widely-used datasets, e.g., CIFAR-100 and ImageNet. Further ablation studies and experimental results on representative computer vision tasks, i.e., object detection, class activation mapping, and salient object detection, further verify the superiority of the Res2Net over the state-of-the-art baseline methods. The source code and trained models are available on https://mmcheng.net/res2net/.Comment: 11 pages, 7 figure

    (E)-Benzaldehyde (2,4,6-trichloro­phen­yl)hydrazone

    Get PDF
    The title compound, C13H9Cl3N2, was obtained from a condensation reaction of benzaldehyde and 2,4,6-trichloro­phenyl­hydrazine. The mol­ecule assumes an E configuration with the phenyl ring and trichloro­phenyl ring located on opposite sides of the C=N bond. The phenyl ring is oriented at a dihedral angle of 42.58 (12)° with respect to the tricholorophenyl ring. In the crystal, the mol­ecules are linked via N—H⋯N hydrogen bonds, forming supra­molecular chains running along the c axis. π–π stacking is present between parallel trichloro­phenyl rings of adjacent mol­ecules, the face-to-face and centroid–centroid distances being 3.369 (14) and 3.724 (2) Å, respectively

    Antidepressant-like activity of oroxylin A in mice models of depression: A behavioral and neurobiological characterization

    Get PDF
    Depression is a mood disorder which causes a huge economic burden to both families and societies. However, those monoamine-based antidepressants used in clinical practice have been found to have various limitations. Therefore, currently it is very necessary to explore novel antidepressant targets and medications. As a main active component extracted from Scutellariae radix, oroxylin A possesses many pharmacological functions such as anti-cancer, anti-inflammation and neuroprotection. Here, the present study aims to investigate whether oroxylin A possess antidepressant-like actions using the chronic unpredictable mild stress (CUMS) and chronic restraint stress (CRS) models of depression, forced swim test, tail suspension test, open field test, sucrose preference test, western blotting, immunofluorescence and viral-mediated gene interference. Our results revealed that treatment of oroxylin A fully prevented both the CUMS-induced and CRS-induced depressive-like behaviors in mice. Moreover, the protecting effects of oroxylin A against CUMS and CRS on mice behaviors were accompanied with a significant enhancement on the levels of brain-derived neurotrophic factor (BDNF), phosphorylated tyrosine kinase B (pTrkB), phosphorylated cAMP-response element binding protein (pCREB) and neurogenesis in the hippocampus. Furthermore, genetic knockdown of BDNF and TrkB in the hippocampus remarkably abolished the antidepressant-like efficacy of oroxylin A in both the CUMS and CRS models of depression, proving that the hippocampal BDNF-TrkB system participates in the antidepressant mechanism of oroxylin A. In summary, our findings are the first evidence showing that oroxylin A possesses potential of being an antidepressant candidate

    Underlying beneficial effects of Rhubarb on constipation-induced inflammation, disorder of gut microbiome and metabolism

    Get PDF
    Background: Constipation is a common syndrome and a worldwide healthy problem. Constipation patients are becoming younger, with a 29.6% overall prevalence in children, which has captured significant attention because of its epigenetic rejuvenation and recurrent episodes. Despite the usage of rhubarb extract to relieve constipation, novel targets and genes implicated in target-relevant pathways with remarkable functionalities should still be sought for.Materials and methods: We established a reliable constipation model in C57B/6N male mice using intragastric administration diphenoxylate, and the eligible subjects received 600 mg/25 g rhubarb extract to alleviate constipation. Resultant constipation was morphological and genetically compared with the specimen from different groups.Results: Constipation mice exhibited thicker muscle layers, higher levels of cytokines, including IL-17 and IL-23, and lower content of IL-22. Bacterial abundance and diversity varied tremendously. Notably, the alterations were reversed following rhubarb extract treatment. Additionally, Constipation also had a substantial impact on short-chain fatty acids (SCFAs), medium- and long-chain fatty acids (MLCFAs), and the expression of SCFA receptors, GPR41 and GPR43.Conclusion: This thesis has provided insight that rhubarb extract promoted the flexibility of collagen fiber, reduced pro-inflammatory cytokines, enhanced anti-inflammatory cytokines, and maintained gut microflora balance with potential impacts on the fatty acid and polyamine metabolism

    Polymorphisms of −174G>C and −572G>C in the Interleukin 6 (IL-6) Gene and Coronary Heart Disease Risk: A Meta-Analysis of 27 Research Studies

    Get PDF
    OBJECTIVE: Elevated serum IL-6 level is a risk factor for coronary heart disease (CHD). The -174 G>C and -572 G>C polymorphisms in the IL-6 gene have previously been shown to modulate IL-6 levels. But the association between the -174 G>C and -572 G>C polymorphisms and the risk of CHD is still unclear. A meta-analysis of all eligible studies was carried out to clarify the role of IL-6 gene polymorphisms in CHD. METHODS AND RESULTS: PubMed, EMBASE, Vip, CNKI and CBM-disc were searched for eligible articles in English and Chinese that were published before October 2010. 27 studies involving 11580 patients with CHD and 17103 controls were included. A meta-analysis was performed for the included articles using the RevMan 5.0 and Stata 10.0 softwares. Overall, the -174 C allele was not significantly associated with CHD risk (ORs = 1.04, 95%CI = 0.98 to 1.10) when compared with the -174 G allele in the additive model, and meta-analysis under other genetic models (dominant, recessive, CC versus GG, and GC versus GG) also did not reveal any significant association. On the contrary, the -572 C allele was associated with a decreased risk of CHD when compared with the -572 G allele (ORs = 0.79, 95%CI = 0.68 to 0.93). Furthermore, analyses under the recessive model (ORs = 0.69, 95% = 0.59 to 0.80) and the allele contrast model (genotype of CC versus GG, ORs = 0.49, 95% = 0.35 to 0.70) yielded similar results. However, statistical significance was not found when the meta-analysis was restricted to studies focusing on European populations, studies with large sample size, and cohort studies by using subgroup analysis. CONCLUSIONS: The -174 G>C polymorphism in the IL-6 gene is not significantly associated with increased risks of CHD. However, The -572 G>C polymorphism may contribute to CHD development. Future investigations with better study design and large number of subjects are needed
    • 

    corecore